Outlier Detection Based on Granular Computing
نویسندگان
چکیده
As an emerging conceptual and computing paradigm of information processing, granular computing has received much attention recently. Many models and methods of granular computing have been proposed and studied. Among them was the granular computing model using information tables. In this paper, we shall demonstrate the application of this granular computing model for the study of a specific data mining problem outlier detection. Within the granular computing model using information tables, this paper proposes a novel definition of outliers GrC (granular computing)-based outliers. An algorithm to find such outliers is also given. And the effectiveness of GrC-based method for outlier detection is demonstrated on three publicly available databases.
منابع مشابه
Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملINTERVAL ANALYSIS-BASED HYPERBOX GRANULAR COMPUTING CLASSIFICATION ALGORITHMS
Representation of a granule, relation and operation between two granules are mainly researched in granular computing. Hyperbox granular computing classification algorithms (HBGrC) are proposed based on interval analysis. Firstly, a granule is represented as the hyperbox which is the Cartesian product of $N$ intervals for classification in the $N$-dimensional space. Secondly, the relation betwee...
متن کاملGranular Box Regression Methods for Outlier Detection
Granular computing (GrC) is an emerging computing paradigm of information processing. It concerns the processing of complex information entities called information granules, which arise in the process of data abstraction and derivation of knowledge from information. Granular computing is more a theoretical perspective, it encourages an approach to data that recognizes and exploits the knowledge...
متن کاملOutlier Detection using Granular Box Regression Methods
Granular computing (GrC) is an emerging computing paradigm of information processing. It concerns the processing of complex information entities called information granules, which arise in the process of data abstraction and derivation of knowledge from information. Granular computing is more a theoretical perspective, it encourages an approach to data that recognizes and exploits the knowledge...
متن کاملRough K-means Outlier Factor Based on Entropy Computation
Many studies of outlier detection have been developed based on the cluster-based outlier detection approach, since it does not need any prior knowledge of the dataset. However, the previous studies only regard the outlier factor computation with respect to a single point or a small cluster, which reflects its deviates from a common cluster. Furthermore, all objects within outlier cluster are as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008